Forced patterns near a Turing-Hopf bifurcation.

نویسندگان

  • Chad M Topaz
  • Anne J Catllá
چکیده

We study time-periodic forcing of spatially extended patterns near a Turing-Hopf bifurcation point. A symmetry-based normal form analysis yields several predictions, including that (i) weak forcing near the intrinsic Hopf frequency enhances or suppresses the Turing amplitude by an amount that scales quadratically with the forcing strength, and (ii) the strongest effect is seen for forcing that is detuned from the Hopf frequency. To apply our results to specific models, we perform a perturbation analysis on general two-component reaction-diffusion systems, which reveals whether the forcing suppresses or enhances the spatial pattern. For the suppressing case, our results are consistent with features of previous experiments on the chlorine dioxide-iodine-malonic acid chemical reaction. However, we also find examples of the enhancing case, which has not yet been observed in experiment. Numerical simulations verify the predicted dependence on the forcing parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Turing instabilities and patterns near a Hopf bifurcation

Rui Dilão Grupo de Dinâmica Não-Linear, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. and Institut des Hautes Études Scientifiques, 35, route de Chartres, 91440, Bures-sur-Yvette, France. [email protected] Phone: +(351) 218417617; Fax: +(351) 218419123 Abstract We derive a necessary and sufficient condition for Turing instabilities to occur in twocomponent systems of ...

متن کامل

Spatio{temporal Dynamics near a Supercritical Turing{hopf Bifurcation in a Two{dimensional Reaction{diiusion System

Pattern formation in semiconductor heterostructures is studied on the basis of a spatially two{dimensional model of reaction{diiusion type. In particular, we investigate the neighbourhood of a codimension{two Turing{Hopf instability by analytical methods. Amplitude equations are derived which predict the absence of mixed modes but extended ranges of bistability between homogeneous oscillatory s...

متن کامل

Spatiotemporal Dynamics of a Diffusive Leslie-Gower Predator-Prey Model with Ratio-Dependent Functional Response

This paper is devoted to the study of spatiotemporal dynamics of a diffusive Leslie–Gower predator–prey system with ratio-dependent Holling type III functional response under homogeneous Neumann boundary conditions. It is shown that the model exhibits spatial patterns via Turing (diffusion-driven) instability and temporal patterns via Hopf bifurcation. Moreover, the existence of spatiotemporal ...

متن کامل

Spatial, temporal and spatiotemporal patterns of diffusive predator–prey models with mutual interference

In this paper, the spatial, temporal and spatiotemporal dynamics of a reaction–diffusion predator–prey system with mutual interference described by the Crowley–Martin-type functional response, under homogeneous Neumann boundary conditions, are studied. Preliminary analysis on the local asymptotic stability and Hopf bifurcation of the spatially homogeneous model based on ordinary differential eq...

متن کامل

SPATIOTEMPORAL DYNAMIC OF TOXIN PRODUCING PHYTOPLANKTON (TPP)-ZOOPLANKTON INTERACTION

The present paper deals with a toxin producing phytoplankton (TPP)-zooplankton interaction in spatial environment in thecontext of phytoplankton bloom. In the absence of diffusion the stability of the given system in terms of co-existence and hopf bifurcation has been discussed. After that TPP-zooplankton interaction is considered in spatiotemporal domain by assuming self diffusion in both popu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 81 2 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2010